Hilbert cube - определение. Что такое Hilbert cube
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:     

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Hilbert cube - определение


Hilbert cube         
  • 600px
INFINITE-DIMENSIONAL CUBE WITH A COMPACT TOPOLOGY
Hilbert cubes
In mathematics, the Hilbert cube, named after David Hilbert, is a topological space that provides an instructive example of some ideas in topology. Furthermore, many interesting topological spaces can be embedded in the Hilbert cube; that is, can be viewed as subspaces of the Hilbert cube (see below).
Hilbert series and Hilbert polynomial         
POLYNOMIAL FUNCTION WITH RATIONAL COEFFICIENTS WHOSE VALUES AGREE, FOR SUFFICIENTLY LARGE ARGUMENT, WITH THE DIMENSIONS OF GRADED COMPONENTS OF A GRADED ALGEBRA
Hilbert function; Hilbert series; Hilbert regularity; Hilbert polynomial; Hilbert characteristic function
In commutative algebra, the Hilbert function, the Hilbert polynomial, and the Hilbert series of a graded commutative algebra finitely generated over a field are three strongly related notions which measure the growth of the dimension of the homogeneous components of the algebra.
Riemann–Hilbert problem         
CLASS OF PROBLEMS THAT ARISE IN THE STUDY OF DIFFERENTIAL EQUATIONS IN THE COMPLEX PLANE
Riemann-Hilbert problem; Riemann-Hilbert factorization; Riemann-Hilbert; Riemann–Hilbert; Riemann–Hilbert problems; Riemann-Hilbert problems; Riemann–Hilbert factorization
In mathematics, Riemann–Hilbert problems, named after Bernhard Riemann and David Hilbert, are a class of problems that arise in the study of differential equations in the complex plane. Several existence theorems for Riemann–Hilbert problems have been produced by Mark Krein, Israel Gohberg and others (see the book by Clancey and Gohberg (1981)).